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Abstract

A technique is presented for adapting computational neshes used in
the (2 version of the dircet simulation Monte Carlo method. The physical
ideas underlying the technigue are discussed, and adaptation formulas are
developed for use on solutions generated frony an initial mesh. The effect of
statistical scatter on adaptation is addressed, and results demonstrate the
ability of this technique to achieve more accurate results without increasing
necessary computational resources,

Introduction

In recent years, statistical particle methods, such as the direct sim-
ulation Monte Carlo method (DSMC), have become a popular approach
for simulating high-speed, rarefied gas flows.' ~* However, their widespread
use is often hampered by heavy demands on computational resources, such
as rietory and CPU time. In addition, investigators must often use their
mitial results as a guideline for obtaining more accurate answers by modi-
fying initial spatial or temporal resolution. This iterative process increases
the amount of user time, and often the amount of computational resources,
tecessary to compute an accurate solution.

The purpose of this investigation is to examine algorithms for automat-
ically adapting grids to initial DSMC solutions using a number of seermingly
conflicting criteria for accuracy. With such procedures, we expect to reduce
the mermory, CPU time, and user time necessary to achieve satisfactory lev-
els of accuracy. The algorithms examined here are compatible with the (i2
version of the DSMC method.
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Discussion

From experience with DSMC simulations, users have developed accu-
racy criteria with respect to grid resolution. While it is unnecessary to obey
these rules everywhere at all times, following them provides some confidence
that the final results are as accurate as the method permits.®

One rule maintains that in viscous layers, shock waves, and shear
layers, where macroscopic properties undergo strong changes, cell spacing
along these gradients should not exceed one local mean free path length, A
This ensures that properties transported across these gradients through
interparticle collisions are captured properly.

Another rule requires that near surfaces, cell spacing normal to the
hody should also be shorter than A. This is because in certain areas, such
as in the vicinity of adiabatic surfaces, flowfield gradients may be very small,
and the first rule i1s not stringeni enough to adequately capture flowfield
physics.

Adaptation Methodology

Intuitively, it appears that functions advantageous for grid adaptation
should have properties pertinent to important aspects of the flowfield as
well as having properties advantageous to fulfilling the rules cited above.
Regarding the first criterion, areas where strong gradients occur are often
characterized by a non negligible “gradient Knudsen number,” Kn,.® The
reciprocal length scale (I,)~! of this Knudsen number is comprised of the
local change in some flow variable «x along its direction of strongest change ¢,
divided by the local value of the flow variable itself
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Gradient length scales appear to be desirable quantities to use as physical
length scales for grid adaptation. As just noted however, variables chosen
for a, such as density, velocity, or temperature, while important in much of
the flowfield, may not accurately reflect changes near certain surfaces. To
satisfy the second criterion, we use A as another physical length scale for
grid adaptation. Presently A is computed using the equilibrium relation-
ship. Although this formula is not valid where translational nonequilibrium
exists, it estimates A well enough for initial adaptation purposes at this
stage of the investigation.

Using reciprocals of these physical length scales, we construet functions
to adapt initial grids from the solutions they generate. To date, the regions
comprising the flowfield are adapted in one direction only. using either
rows or columns of cells in the body-fitted mesh. In Fig. 1, these directions
are denoted by € and 7, respectively. Gradients are calculated using values
contained in cells and their nearest neighbors in the direction of adaptation.
This approximation creates inaccuracies in terms of obtaining true gradients
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Fig. 1 Schematic representation
of DSMC domain mesh.

with respect to a reference frame for the overall flowfield, but it provides a
relative measure of theni along the direction of adaptation. Although the
following procedures are discussed in terms of column adaptation, the same
applies for row adaptation as well.

An adaptation function F is generated from the absolute reciprocal val-
ues of these lengths by computing their cunulative sum up through each
cell in the direction of the grid adaptation. This function increases mono-
tonically, and has its steepest slopes where the inverse lengths are greatest.
Typical behavior of F' is shown in Fig. 2c. For column adaptation, F is
a function of 1, and for a constant number of cells per column, cell spac-
ing A is altered through the adaptation process by inverting the function.
In this manner, the new cell spacing Ay’ is given by equal increments of F,
and Az’ will be minimized where the slope of F' is steepest. A typical value
in a term for altering Az within a column of cells in an / x J matrix is
computed the following way

Fom i1 = ,n An 1_1)/2 An(z j 2)

(Y
i=

As the subscripts indicate, each column of cells has a separate function F
for adaptation. If F' is normalized by its final value, as in Eq. (2), so that
values lie between zero to unity, a number of such functuons, using different
variables for «, may be combined to create a composite function (7. Addi-
tionally, the individual terms of this composite function may be weighted
so that they dominate (¢ where they are strongest.

These ideas were tested for rarefied flow over the front half of a cylinder,
Fig. 2a shows the initial grid and geometry used in the simulation, which
took advantage of owfield symmetry about the stagnation strearnline. The
freestreamn Mach, Reynolds, and Knudsen number values were M. = 3.1,
Rey o = 88.6, and Kn, , = 0.052, respectively, based on cylinder radius,
and the cylinder’s surface temperature was equal to the freestream stagna-
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Fig. 2 Flow over cylinder, Mo, = 3.1, Reroo = 88.6, An, 0 = 0.052, &
Tw/Too = 2.92: (a) original mesh, (b) density contours [kg/m?], (c) vari-
ation of F & G for cells nearest centerline.

tion temperature (To, = 300K, Ty, = To = 877 K). Density contours from
the results are shown in Fig. 2b. A composite function ¢ was developed to
emphasize tight cell spacing near the surface and through the shock wave
to adequately capture surface fluxes and flowfield gradients through the
shock wave. The function adapted cell spacing A7 nominally normal to
the cylinder’s surface, and was weighted towards X near the surface and
towards [,,, the gradient length scale based on number density n, near the
outer boundary. The specific form of G; became

- y ﬂ -
G(m.j) = (’Z—f("%j)l) F(m.j: 1)

3 n(m, ) o\ _—
+(1 <n(1,j))>F( A @
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Fig. 3 Meshes adapted to solution depicted in Fig. 2: (a) adapted to
Eq. (3) without filtering, (b) same, with slight FFT filtering.

The weighting factor was controlled by the free parameter 3, an exponent
whose value was set to unity for linear weighting. The variation of ¢ and
its constituents with distance away from the cylinder near the stagnation
streamline are shown in Fig. 2c.

Fig. 3a shows the adapted mesh resulting from application of Eq. (3)
to the initial results. Comparing Fig. 3a and Fig. 2a, it is apparent that
mesh lines are now strongly biased towards the location of the shock wave
and near the cylinder’s surface in the stagnation region.

Handling of Statistical Fluctuations

Fig. 3a also reveals a complication in the grid adaptation process. Note
the “herringbone” pattern resulting from the statistical nature of particle
methods, which is accentuated in regions of large [,,. Cell-averaged flowfield
properties have a certain level of statistical scatter, or “noise” associated
with them. In order to shorten the iteration process, we wish to adapt the
miesh to solutions with small levels of sampling, which magnifies the effects
of statistical scatter. This problem is further aggravated by adapting to
flowfield gradients, obtained by differencing statistically noisy values.

Efforts to use least-square fits of polynomials and conic sections to the
adapted grid lines proved ineffective. Such fits shifted tight grid spacing
away from certain areas where it was physically needed. We also evaluated
different filters to reduce the noise in the data set and/for the altered mesh.
They were: centrally weighted averaging, median filtering,® and fast fourier
transform (FFT) filtering.” Of these, FFT filtering has been the most effec-
tive at reducing the high-frequency noise in our data sets. However, it can
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produce low-frequency variations in values of data sets or in grid spacing,
sometimes shifting tight grid spacing away from where it is needed. Nev-
ertheless, we retained it as a tool for producing acceptable grids. Fig. 3b
shows the result of applying FFT filtering to the mesh depicted in Fig. 3a.

The most successful method for reducing statistical scatter encountered
thus far resulted from observations concerning F and ;. These functions
adapt to data in only one direction, and for column adaptation each colurmnn
of cells is adapted independently. There is no regard for the fact that final
values the denominators receive before normalization vary across columns.
In Fig. 4, the values of F' denominators for each column of the simulation
depicted in Fig. 2 are shown. The first column represents cells closest
to the flowfield centerline, and the last column represents those nearest
the exit plane. Such variation depends on mesh geometry, over which F
denominators may vary widely. When F F or (i is used where no strong
gradients exist, the functions tend to adapt to the spiky noise itself. We
preferred preserving features of the original grid where this occurs.

A variable coefficient ['(/, j;{a) was created for F, equal to the ratio of
the denominator of F for each column to the maximum value of F denom-
inators across all columns. The unitary complement of this coefficient then
multiplies S"An/y, the incremental arc length of the original grid itself.
The coefficient T'(/, j;{s) and the modified function F are given by

I .. I 1.1
= Ali,g) Anti,4)
L1, jila) = i=1 m/(i:l la(i,4) )ma:c a

200 q2.5
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Fig. 4 Variation of £ denominators across columns for solution de-
picted in Fig. 2.
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and

- ) m A
F(m, jila) = T(1, jila) F(m, j: 1) + (1 —T(1, ] 1 ) ”’(’;"]’) (5
(1,

Since [ ranges from zero to one, the impact of individual F variations on
grid spacing are de-emphasized along columns where their summations are
relatively small. Again, F' functions based on different variables may be
combined to create composite functions, herein denoted by .

Results

In Fig. ha, we show an initial grid consisting of four separate regions,
once again for flow over a cylinder. In this example, the freestream con-
ditions consisted of M., = 6.0, Re, o, = 684, Kn, . = 0.013, and T
= 63 K. The surface temperature was T,, = 300 K. Since the overall govern-
ing Knudsen number places this simulation in the near-continuum regime,
multiple regions enhanced resolution in the vicinity of the bow shock and
in the viscous region near the surface. Simulation results are qualitatively
similar to those depicted in Fig. 2b. We fabricated the grid shown in Fig. 5b
using the following composite function (7, based on I, and A

5, o {nlm,j)
G(m,j) = (72(1—1J)> I(1,5;4) (m Jiln)

n(m, )Y ;
) 7)1]
+ (2—1‘(1,1,1n)— (1,3:4) )2; ) ©)

By using X as one of the variables for adaptation, we expected to reduce
in the number of cells violating the rule regarding grid spacing versus A in
areas of enhanced resolution. Diagnostics in the adaptation code confirm
this feature for this case. In the initial solution, the fraction of cells violating
this rule was 0.1% in Region 1 (near the surface), and 24% in Region 3
(through the shock wave). It should be noted that few of these cells grossly
violated the rule, however. After repeating the simulation on an adapted
grid without FFT smoothing for approximately the same number of steady-
state timesteps, this rule was violated only 0% and 9% in those respective
regions.

Up to this point, the simulations presented here have arguably had
adequate resolution before undergoing grid adaptation. Our final example
dernonstrates that this adaptation process can increase solution accuracy
for a given grid with a fixed number of cells and regions even when the initial
solution suffers from inadequate resolution. This case stems from a series
of simulations originally run in conjunction with a DSMC investigation of a
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Fig. 5 Multiple-region mesh for calculating flow over cylinder, M.
= 6.0, Rey oo = 684, Kn, oo = 0.013, & T, /T = 4.76. Ounly every fifth
“tangential” grid line shown for clarity: (a) original mesh, (b} mesh
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adapted to initial solution using Eq. (6), without filtering.

shock-shock interaction problem.! Data from the interaction problem was
used to model the shear layer that develops beyond the point where the
The simulation was run for three different levels
The medium

shock waves intersect.
of resolution approximately normal to the flow direction.
resolution grid has four times as many cells in the y-direction as the coarsest
mesh, and the highest resolution grid has sixteen times as many cells in that
direction as the coarsest mesh. It is considered that only the final mesh
had adequate resolution.! Fig. 6 depicts velocity magnitude contours from

these high-resolution results.

Yim]

-5%x10*
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-1x107°

Fig. 6 Shear flow generated using conditions from separate shock-shock

-5x10°*

5x10™

interaction problem. Velocity magnitude contours [m/sec].

X[m]
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Fig. 7 Meshes used to calculate flowfleld depicted in Fig. 6: (a) original
mesh, (b) mesh adapted to initial solution using modified version of
Eq. (6) with slight FFT filtering.

In Fig. 7a, we show the initial grid used in the coarsest simulation.
Investigating the effects of different length scales on adaptation in this
particular case led us to the grid depicted in Fig. 7b. This was generated
using a composite function G similar to that described in Equation (6),
using length scales based on [, and A. The only difference was to replace

the factor
(7}(111, 7) )ﬁ
n(1,7)
with 1/2 because this flowfield did not require the type of weighting desired
for the bounded flowfields depicted earlier. The length scale based on A was
mcluded to dampen noisy contributions from I, .

One run was generated using the grid adapted to the coarsest mesh
results. Another run was generated using a grid adapted to the medium
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Fig. 8 Profiles of <pue> for different meshes used to calculate flow-
field of Fig. 6 at r = 0: (a) unadapted/coarse, (b) adapted/coarse,
(c) unadapted/medium-resolution, (d) adapted/medium-resolution,
and (e) unadapted/high-resolution.

resolution mesh using the same function ;. Clontour plots of the adapted
grid results appeared virtually identical to their respective original cases.
However, as depicted in Fig. 8, profiles of the energy flux <pue> at a plane
across ¢ = 0, a location containing some of the steepest gradients, demon-
strate the relative effectiveness of the grid adaptation technique. The peak
flux from the solution on the coarse adapted grid is 15% higher than that
from the plain coarse grid, and the solution from the medium-level adapted
grid shows a peak energy flux 4% higher than its progenitor. Also, the gra-
dients captured by the adapted grids are slightly steeper than their respec-
tive original cases, and occur over a narrower band. The full-width/half-
maximum value of <pue> for the coarse adapted grid is 86% of the original
coarse-grid solution, and that for the medium adapted grid is 96% of the
unadapted medium-resolution result. In both peak flux and flux width, the
trend of data is toward the high-resolution result when going from original
to adapted-grid solutions.

Considerations for Future Work

Although we have addressed the rules mentioned in the Discussion
section, we have made no provision guaranteeing an adequate number of
particles per cell for proper collision mechanics. Additionally, for optimum
use of computational resources, we desire roughly equal numbers of parti-
cles per cell. This rule conflicts with cell resolution guidelines, since the
local cell population is proportional to the product of local density and cell
volume. The conflict can be resolved somewhat by using variable particle
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scale factors, a concept already extended by Olynick to the limit where
cach cell is treated as a separate region. ® It may be desirable to combine
current adaptive mesh procedures with such an approach.

The last example illustrates that in adapting to an initial solution with
grossly madequate resolution, the level of improvement is constrained by
fixing the number of cells and regions to those of the mitial solution. It
would be useful to automatically increase or decrease cell resolution by
changing the number of cell rows or columns allotted to a given region
based on the initial solution. It may even be advantageous to relax the
constraints on the locations of certain outer boundaries (ahead of a bow
shoek into the freesteam, for example).

It would also be advantageous to adapt rows and columns of cells
simultaneously for enhanced ability to capture governing flowfield phenoin-
ena, within the constraints unposed by proper collision mechanies. Finally,
restarting calculations from existing solutions on adapted grids, rather than
beginning new cotputations from scrateh, would greatly reduce the amount
of tire spent achieving new steady-state solutions.

Conclusions

We have begun developing a technique for adapting DSMC meshes to
flowfield solutions. The functions used for adapting these grids are based
on length scales that are physically meaningful in terins of satis{fying certain
erpirical rules usually fulfilled manually. The formulation of these adap-
tation functions i1s flexible enough that they may be used for unbounded
tlowtields as well as flows past bodies. Use of this technique can improve
resolution without requiring greater resources in terms of numbers of cells
and particles, or the extra CPU time and memory necessary to solve a
larger simulation,
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